Development of a minipig physical phantom from CT data
نویسندگان
چکیده
Quantification of pathological progression of radiation-induced injury is essential in development of treatment methods, and a proper animal model is necessary for relevant radiological and medical studies. A minipig is a current animal model selected because of its similarities to humans in anatomy and pathology. In the present study, a minipig physical phantom was developed using computed tomography (CT) data. For dosimetry purposes, the minipig physical phantom was constructed on a slice-by-slice basis, with an array of holes to accommodate dosimeters. The phantom is constituted of three major organs, i.e. bone, lung, and remaining soft tissue, and the organs are clearly distinguishable on each 20-mm-thick axial slice. The quality of the tissue-equivalent (TE) substitutes was analyzed in terms of the atomic compositions and Hounsfield units (HUs). The density (in g/cm3) and effective atomic number of TE substitutes for the bone, lung, and soft tissue are 1.4 and 7.9, 0.5 and 10.0, and 1.0 and 5.9, respectively. Although the TE substitutes have slightly different physical properties, we think the phantom is acceptable because the HU values of the TE substitutes lie in the HU range of real tissues.
منابع مشابه
Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation
Background: This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation. Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...
متن کاملFabrication of anthropomorphic phantoms for use in total body photon irradiation and total skin electron irradiation studies
Introduction: Total Skin Electron Therapy (TSET) and Total Body Irradiation (TBI) are kinds of treatment which use electron and photon beams to treat special types of cancers. The aim of these techniques are to deliver uniform dose to the entire skin while minimizing delivered dose to organs at risk. To check the homogeneity of dose delivery in TBI and TSET, using a humanoid ph...
متن کاملDesign and Development of an Indigenous in-house Tissue-Equivalent Female Pelvic Phantom for Radiological Dosimetric Applications
Introduction: The present study is aimed to design and develop a tissue-equivalent pelvic phantom, mimicking the Indian female pelvic dimensions by means of locally available and cost-effective tissue substitutes having equivalent radiological properties. Materials and Methods: For the purpose of the study, the real female pelvic bones were embedded for preparation. Paraffin wax, Aloe-vera powd...
متن کاملComparison dose distributions from gamma knife unit 4C with CT data and non-CT data options of beamnrc code
Todays gamma knife radiosurgery is used widely for treatment of very small brain tumors. In order to investigate accuracy of dosimetry and treatment planning calculations, using Monte Carlo simulation with dedicated code named as beamnrc including non-CT data and CT data options is necessary. The aim of this study is choosing the best options in order to have an accurate tools based on their ad...
متن کاملDesign and Fabrication Process of MTF Phantom CT Scan
Introduction: One of the main steps in the optimization process in diagnostic imaging is the quality control of radiology devices. The usual method of CT scan calibration is used of a phantom. The phantom created a certain weakening for the radiation through which it passes. One of the most suitable methods for quantitative analysis of the resolution and contrast in CT scan im...
متن کامل